文章编号:0258-7025(2002)03-0257-06

大功率激光光束聚焦光斑功率密度分布 直接测量仪的研究

李强,雷訇,黄民双,于振声,王智勇,左铁钏

(北京工业大学国家产学研激光技术中心,北京 100022)

提要 针对激光加工大功率激光功率密度分布测量的要求,采用空心探针扫描采样测量法,提出并建立了被测激 光经探针小孔、探针内通道传输的数学物理模型 经计算 给出了包括探针微孔孔径、探针内通道尺寸、系统采样点 数等系统参数,设计了新的测量系统,实现了对大功率激光光束、聚焦光斑功率密度分布的直接测量,测量结果与 理论计算相吻合。测量仪能对 CO₂ 激光和 YAG 激光进行直接测量,测量的功率大于 10 kW,功率密度大于 10⁷ W/ cm² 测量激光光束的最大直径为 60 mm,激光聚焦光斑的直径小于 0.5 mm。

关键词 大功率激光 功率密度分布 直接测量

中图分类号 TN 247 文献标识码 A

Research on High Power Laser Beam and Focus Power Intensity Distribution Directly Measuring Instrument

LI Qiang, LEI Hong, HUANG Min-shuang, YU Zhen-sheng, WANG Zhi-yong, ZUO Tie-chan (Beijing Polytechnic University, NCLT, Beijing 100022)

Abstract Using the method of rotating needle pinhole, the measuring system which can directly measure the high dense laser transverse intensity distribution of laser beams/focus for laser processing is developed. The mathematical and physical models of measured laser beams/focus propagation in needle pinhole are established. According to the calculation, the system parameters, including aperture of needle pinhole, dimension of propagation channel, dot number of sampling, are given. A new measuring system is designed. The measuring of high power laser beams/focus by this system is realized. The calculation results are of agreement with the measuring results. The instrument can measure CO_2 and YAG laser, measured power larger than 10 kW, maximal measured power density up to 10^7 W/cm^2 , measured laser beam maximal diameter is 60 mm, measured laser focus minimal diameter smaller than 0.5 mm.

Key words high power laser, transverse intensity distribution, directly measurement

1 引 言

用于激光加工的大功率激光光束是指功率在几 百瓦到上万瓦,光斑的功率密度高达10⁷ W/cm²的 激光光束。由于激光功率、光束的模结构与聚焦光 斑形态等参数对加工质量都起着决定性的作用,要 求对激光加工过程中大功率激光束的传输与聚焦质 量进行监测,以获得大功率激光光束的尺寸、模结 构、束腰位置、焦点大小、聚焦光斑形态、强度截面分 布等测量参数,为激光加工质量的提高提供最基本 的数据。且为制造大功率的激光器及聚光镜、反射 镜等光学元件提供基本的检测数据。

本文根据激光加工用大功率激光光束诊断系统 的要求,设计了采用空心探针方法¹¹对激光光束、光 斑进行检测的系统,实现了对大功率激光光束光斑 的测量。

收稿日期 2001-01-05; 收到修改稿日期 2001-03-19

基金项目 国防科工委重点预研资助项目。

作者简介 字强(1965—) 男 四川乐山人 北京工业大学激光工程研究院副教授 ,硕士 ,主要从事激光、光电子技术研究。 E-mail incltlq@bjpu.edu.cn

2 测量原理

空心探针方法的工作原理如图 1 所示,以固定 在平动台上的高速旋转空心探针高速扫过光束横截 面,部分光束通过探针传到探测器,对光束、光斑进 行扫描,测得扫描线的强度分布,同时,使平动台垂 直于光束方向平动,测得多条扫描线的强度分布,如 图 2 所示。经计算处理,得到整个光斑的功率密度 分布。

Fig.1 Principle of measurement by a hollow probe

图 2 测得强度分布扫描线示意图

Fig.2 Schematic plan of scanning line intensity distribution

3 模型建立和理论分析

3.1 模型建立

测量仪的关键部件之一是空心探针,其作用是 对被测光进行采样,并将光传输至与转轴中心相对 静止的探测器上。从图 1 可看出,整个采样探针由 小孔、反射镜、内腔通道和反射镜组成。两反射镜是 理想的部件,探针对被测光进行采样、传输的模型, 归结为探针小孔和探针内腔通道光传输的模型。

3.1.1 小孔传输激光的模型

探针的小孔,由于其孔的深度与孔直径相比是 不能忽略的,故应将小孔表征为一个波导体,即采样 光以受激波导体模式在小孔中传播,而后过渡到相 应的自由空间波。根据波导传输理论,可清楚地表 述出射光,但根据有限厚小孔衍射的电磁场理论,垂 直入射情况下的精确计算表明²¹,在一定条件下,光 经有限厚小孔的衍射在远场中的衍射图形可近似地 用夫琅和费衍射来描述。这样,探针小孔传输激光 的模型,可采用夫琅和费衍射来描述。

3.1.2 内腔通道传输激光的模型

内腔通道的作用是传输经小孔出射的激光。为 便于实施,将内腔通道的横截面设计为一方形,其截 面尺寸为毫米量级,并假定探针内腔的表面是平整 光洁的。

通道传输小孔出射的激光,在通道入口受发散 模式的激励,在通道内部将形成高阶模。由于通道 截面尺寸比波长大很多,处于高阶模的极限情况,其 射线场可作光线传输近似。因此,通道内激光传输 的模型描述为,从小孔出射光束进入通道经多次反 射而被传送至出口。为便于表征,假定入射光的偏 振方向平行或垂直于入射平面。通道的传输率可用 公式(1) 决确定

$$T_c = (1 - A_x)^n (1 - A_y)^n$$
 (1)

其中 n_x , n_y 为各自壁上的反射次数; A_x , A_y 为相互垂 直的两个通道内壁的吸收率。反射次数与入射角 θ 和 ϕ 及通道的宽度w,高度 h和长度l有关,确切关系 由下式决定

$$n_x = \frac{1}{h} \tan\theta \sin\phi$$
 , $n_y = \frac{1}{w} \tan\theta \cos\phi$ (2)

假定 A_x,A_y分别为上下内壁和左右内壁的吸收率, 在上下内壁上当入射光的偏振方向平行于入射平面 时,对左右内壁而言偏振方向则是垂直于入射平面 的,此时有

$$1 - A_x = \frac{(\cos\theta - u)^2 + v^2}{(\cos\theta + u)^2 + v^2}$$

$$1 - A_y = \frac{[(n^2 - k^2)\cos\theta - u]^2 + (2nk\cos\theta - v)^2}{[(n^2 - k^2)\cos\theta + u]^2 + (2nk\cos\theta + v)^2}$$
(3)

和

$$2u^{2} = (n^{2} - k^{2}) - \sin^{2}\theta +$$

$$\{ (n^{2} - k^{2}) - \sin^{2}\theta \} + 4n^{2}k^{2} \}^{1/2}$$

$$2v^{2} = -(n^{2} - k^{2}) + \sin^{2}\theta +$$

$$\{ (n^{2} - k^{2}) - \sin^{2}\theta \} + 4n^{2}k^{2} \}^{1/2}$$

$$(4)$$

其中 n 为探针金属材料的折射率 ,k 为衰减指数和 折射率的乘积。

3.2 探针的传输率

3.2.1 传输率模型

为了计算探针的传输率,假定一束激光在入射 平面中以 α 角射到小孔。利用夫琅和费衍射公式及 (1)~(4)式,计算从通道发射出的功率。则探针的
 传输率 T 为(未考虑探测角受限的原因)

$$T = P_o/P_i = \int_{0}^{2\pi\pi^2} \int_{0}^{2} f(\alpha, \theta, \phi) T_o(\theta, \phi) d\theta d\phi (5)$$

3.2.2 传输率的计算

由公式(5),传输率与激光束的偏振方向和入射 方向有关。由公式(1)~(4),在偏振光入射的情况 下,两个垂直内壁面上的吸收率(A_x,A_y)是不同的, 减小小孔直径,通过小孔的衍射而在所有壁上几乎 都达到相同次数的反射,可消除偏振造成的影响。

另一方面,探针采用一定的设计制作方法可使 传输率与入射方向无关。对同一探针,探针的传输率 *P_o/P_i*为定值。对不同探针,传输率是不同的,但由 于是相对测量,这不影响对光学参数的测量结果。 图 3 和图 4 分别给出了测量系统的传输特性,对未 聚焦光束和聚焦光斑探针内腔通道的横截面尺寸取 一定值,探针的小孔孔径和内腔通道的长度取不同 的值。从图中可看出,理论计算与实际测量基本吻 合。

the dots are values of practical measurement for CO_2 laser

(a)pinhole diameter is 300 $\mu{\rm m}$;(b)pinhole diameter is 100 $\mu{\rm m}$

图 4 测量系统的传输特性(聚焦光斑) 直线为理论模型计算值,各点为对 CO₂激光实际测量值, 探针内腔通道的横截面为一方形,边长为 1 mm

(a)小孔孔径为 20 µm; (b)小孔孔径为 40 µm Fig.4 Transmitting characteristics of measure

system (focus)

the line is value of theoretical calculation , the dots are values of practical measurement for CO₂ laser (a) pinhole diameter is 20 µm; (b) pinhole diameter is 40 µm

3.3 测量系统的参数

3.3.1 微孔孔径

由测量原理,每一测量点实际上是将经微孔的 光的平均光强近似为测量点的光强。对不同尺寸的 激光束,需要确定微孔孔径。

设被测光束为高斯光束,其光束横截面能量分 布为拉盖尔-高斯分布(对圆形镜腔),拉盖尔-高斯 场结构为^[3]

$$U_{pl}(R,\theta,z) = G_{pl} \exp\left[-ikz - ik\frac{R^{2}}{2R(z)}\right] \times \exp\left[-i(2p+l+1)\phi(z)\right]$$
(6)

$$G_{pl} = \sqrt{\frac{2p !}{\pi(p+l)!}} \frac{1}{\omega_s(z)} \left[\frac{\sqrt{2R}}{\omega_s(z)} \right]^l \times L_p^l \left[\frac{2R^2}{\omega_s^2(z)} \right] \exp \left[-\frac{R^2}{\omega_s^2(z)} + il\theta \right]$$
(7)

混合模激光束的横截面光场强度分布为[4]

$$I(R) = \sum_{pl} (\rho_{pl}G_{pl})^{2} + \sum_{p \neq m, l \neq n} \rho_{pl}\rho_{mn}G_{pl}G_{mn} \times \cos\left\{ [\mathcal{X} p - m] + (l - n] \left[\arctan\left(\frac{z}{Z_{R}}\right) + \phi_{0} \right] \right\}$$

在光束截面上,以被测光束中心为坐标原点,则距光束中心 R 的点用半径为r 的微孔探测的平均 光强为

$$I(R,r_0) = \frac{A}{\pi \cdot r_0^2} \int_0^{r_0} \int_0^{2\pi} I(R,r) r \, dr \, d\phi \qquad (9)$$

为计算由于将微孔平均光强近似为测量点光强 所引起的误差,定义

$$\varepsilon = \frac{I_0(R) - I(R_1, r_0)}{I_0(R)}$$
(10)

式中,*I*₀(*R*)为按(8)式定义的高斯分布截面不同半 径的光强。

由于(9)式只能数值求解,取光斑半径为归一 化半径, r_0 取一半径,h(9)(10)式可计算出 ε 的最 大值 max ε (r_0),改变 r_0 的值,则可得到探针孔径相 对于被测光束半径的关系,如图 5 所示。

测量误差的关系

Fig. 5 Relationship between relative aperture and measuring error

从图 5 可以看出,对不同的模式,用经微孔的平 均光强代替测量点的光强,误差是不同的。考虑误 差较大的 TEM₀₂模,当 $r_0/R \leq 0.01$ 时,即取被测光 束半径为 10 mm,则测量探针微孔的半径应小于 100 μ m 相对误差小于 0.015。

3.3.2 测量点数

测量的结果要求拟合出被测光束的强度分布, 测量的点数越多,拟合出的曲线越接近真实情况,但 测量点数过多,增加测量的难度。事实上,测量的点 数不必太多,因测量点数达到一定值后,再增加对精 度的提高已无太大作用,因此需要确定满足测量精 度要求的测量的点数。

用 3.3.1 中确定的探针微孔的半径,由(9)式所 得的平均光强为测量点的光强 (*R*,*r*₀),设每条扫 描线的测量点数为 *n*,将被测光束截面划分为 *n* 个 小方块,则每一小方块的平均光强满足下式

$$I(x,y,j,n,r_0) = \frac{A}{n \cdot r_0^2} \int_{-\frac{w}{2n}}^{\frac{w}{2n}} \int_{j\frac{w}{2n}-\frac{1}{n}}^{j\frac{w}{2n}+\frac{1}{n}} I(R) dx dy^{(8)}$$
(11)

为计算由 n 个测量点平均光强的拟合曲线表 示扫描线的强度分布所引起的误差 定义

$$\delta(n) = \max\left[\frac{I_0(R) - I(x, y, j, n, r_0)}{I_0(R)}\right] (12)$$

式中, *I*(*R*)为按(8)式定义的激光分布截面不同半 径的光强。

取光斑半径为归一化半径 , $r_0 = 100 \ \mu m$,当 n 取 一定值 ,h(12)式可计算出 δ 的最大值 $max \delta(n)$ 改 变 n 值 则可得到 n 个测量点平均光强表示扫描线 的强度分布最大误差关系 ,如图 6 所示。最大误差 $max\delta$ 是考虑了微孔的平均光强近似为测量点的光 强引起的误差 ,是系统模型的整体误差。

图 6 用微孔的平均光强表示扫描线各点的强度分布与 测量误差的关系

从图 6 可见,当 n > 30 时,每条扫描线的测量 点数为 30 时,用微孔的平均光强表示扫描线各点的 强度分布,误差小于 0.001。

为了简化以上的模型和计算,假设被测光束为 三种高阶高斯分布。事实上,加工用大功率激光器, 无论 CO₂ 还是 YAG 激光,许多都是混合模式,相应 的测量点数和微孔的孔径应做相应的调整。考虑到 测量系统的测量精度,同时考虑到系统的可实施性, 系统的测量点数确定为:*n* × *n* = 81 × 41(每条扫描 线的测量点数为 81 *A*1 条扫描线)。

4 诊断仪的结构

诊断仪包含有高速光电转换、数据变换、采集、 机电控制、系统过程控制、数据处理、图形生成软件、 精密机械等部分。

4.1 微控制系统

测量仪由微控制 CPU 控制步进电机和转动进 电机、可编程放大、数据采集、存储、传输及与 PC 机 的数据通讯。微控制系统硬件结构框图如图 7 所 示。

图 7 硬件系统结构框图

Fig.7 Diagram of hardware system

测量仪的整个测量过程由微机控制,系统过程 控制软件分为单片机软件和 PC 机软件两部分。单 片机系统中的软件是控制步进电机,转动电机,A/D 转换器,D/A 转换器和存储器等的工作,同时也提供 实时通信功能。PC 机上的控制软件是控制诊断仪 的工作。

4.3 数据处理与图形生成

测量仪的测量数据由微机进行处理和图形生 成 数据处理与图形生成的软件选取功能强大、易于 使用的 Windows95/98 操作系统平台,采用 Visual Basic 和 Visual C + +编写。测量仪可按多种方式对 所测激光光束、聚焦光斑的形状及功率密度的分布 进行数值分析和显示,被测激光束的光学参数包括: 光束位置坐标、光斑面积、光束半径、峰值功率密度 以及光斑内的平均功率密度。图形显示有平面显示 和立体显示。对 6000 W CO₂ 激光光束测量的各种 结果如图 8 所示。

图 8 测量仪的数值和图形显示

(a) X-Y 截面的分布(b) 三维空间曲面分布(c) 不同视角三维空间曲面分布(d) 空间曲面剖面图; (e) 空间曲面任意截面图(f) 四截面分布图(g) 九截面分布图(h) 功率密度彩色分布图

Fig. 8 Data and graph display measuring result of 6000 W CO2 laser beam with LQD-1

(a) X-Y section distribution ;(b) 3-D intensity distribution ;(c) 3-D intensity distribution at different lookout angle ;

(d) 3-D section distribution ;(e) 3-D intensity cutting distribution at one intensity ;(f) four cutting distribution ;

(g) nine cutting distribution ;(h) color graph display of power density

5 测量仪的实验研究

为验证测量仪的可靠性,将我们研制的测量仪 (LQD-1)与德国 PROMETIC 公司的测量仪(UFF100) 进行比较实验研究。在相同条件下对几种激光光束 和聚焦光斑用这两种测量仪依次进行测量,测量结 果如图9所示。

从图 9 的比较中可以看出,无论是对 CO₂ 激光 光束、聚焦光斑功率密度分布测量,还是对 YAG 激 光聚焦光斑功率密度分布测量,LQD-1 与 UFF100 的 测量结果是一致的。

图 9 LQD-1 与 UFF100 测量仪对比测量结果

(a)(d)为 TRUMPF 6000 W 纵流 CO, 激光器光束功率密度分布测量结果 (b)(e)为 TRUMPF 6000 W 纵流 CO, 激光器聚焦光斑

功率密度分布测量结果 (c)(f)为 HL 1006D 1000 W Nd: YAG 激光光纤传输聚焦光斑测量结果

Fig.9 Measuring result comparison between LQD-1 and UFF100

(a) (d) measuring result of 6000 W CO2 laser beam; (b) (e) measuring result of 6000 W CO2 laser focus;

(c) (f) measuring result of 1000 W Nd: YAG laser focus

6 结 论

LQD-1 测量仪能对 CO₂ 激光和 YAG 激光光束 和聚焦光斑的功率密度分布进行直接测量,测量的 功率大于 10 kW,功率密度大于 10⁷ W/cm²,测量激 光光束的最大直径为 60 mm,激光聚焦光斑的直径 小于 0.5 mm。通过对大功率光束光斑的诊断,能获 得大功率激光光束的尺寸、模结构、束腰位置、焦点 大小、聚焦光斑形态、强度截面分布等测量参数,能 评判激光束的光束质量和稳定性,为制造大功率的 激光器及聚光镜、反射镜等光学元件提供基本的检 测数据,为进行各种材料的大厚度、长距离的激光快 速焊接和切割等大的加工范围激光加工质量的提高 提供最基本的数据。

参考文献

- Li Qiang, Jin Jianghua, Wang Zhiyong *et al*.. High power laser beam/focus diagnostic instrument and its measuring principle [J]. *Laser Technology*(激光技术), 1999, 23(6) 375~377 (in Chinese)
- 2 A. Roberts. Electromagnetic theory of diffraction by a circular aperture in a thick , perfectly conducting screen [J]. J. Opt. Soc. Am. A , 1987 , 4 (10):1970 ~ 1983
- 3 Zhou Binkun, Gao Yizhi, Chen Jiahua. Principle of Laser [M]. Beijing: National Defence Industry Book Concern, 1995. Chap.9(in Chinese)
- 4 Wang Zhiyong. High-power laser beams propagation & focus and its influence upon laser processing quality [D]. PH. D Dissertation. Beijing : Beijing Polytechnic University, 1997 (in Chinese)